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In the tropics, habitat fragmentation alters forest–climate interactions in diverse ways. On a local scale
(less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply
increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass
dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially
in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10–1000 km),
habitat fragmentation may have complex effects on forest–climate interactions, with important conse-
quences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among defores-
tation, regional climate change and fire could pose a serious threat for some tropical forests, but the details
of such interactions are poorly understood.
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1. INTRODUCTION

The fragmented landscape is becoming one of the most
widespread features of the modern world. Nowhere is
habitat fragmentation occurring more rapidly than in the
tropics, where several hundred million hectares of forest
have been destroyed during the past few decades (Lanly
1982; Achard et al. 2002). The correlated processes of
habitat loss and fragmentation are probably the greatest
single threat to tropical biodiversity (Laurance & Bierre-
gaard 1997) and alter many ecosystem functions such as
carbon storage, biogeochemical cycling and regional
hydrology (Lean & Warrilow 1989; Kauffman et al. 1995;
Fearnside 2000).

I therefore synthesize the available information on the
impacts of habitat fragmentation on forest–climate inter-
actions in the tropics. Although much is uncertain, it is
apparent that fragmentation alters such interactions in
diverse ways and at varying spatial scales. Understanding
these interactions and their effects on forest functioning is
essential both for interpreting the effects of global climate
change on tropical ecosystems and for assessing the
impacts of rapid forest conversion on the physical and bio-
logical environment.

2. SIZE AND SHAPE OF FRAGMENTS

Obviously, the processes of deforestation and forest
fragmentation are inextricably linked. As land conversion
proceeds, remnant forest patches usually persist (either by
chance or design) within a matrix of drastically modified
land, such as cattle pastures, slash-and-burn farming plots
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or scrubby regrowth. Most human-dominated landscapes
are numerically dominated by small (less than 100 ha) for-
est fragments (figure 1), although a sizeable percentage of
the remaining forest may persist in a few large (greater
than 1000 ha) fragments (Ranta et al. 1998; Gascon et al.
2000; Cochrane & Laurance 2002).

One of the most critical consequences of habitat frag-
mentation is a drastic increase in the amount of abrupt,
artificial forest edge. Prevailing land uses, such as slash-
and-burn farming and cattle ranching, typically create
irregularly shaped fragments with large amounts of edge
(figure 2). In the Brazilian Amazon, for example, the area
of forest in 1988 that was fragmented (less than 100 km2

in area) or vulnerable to edge effects (less than 1 km from
the forest edge) was over 150% larger than that which had
actually been deforested (Skole & Tucker 1993). Remote-
sensing analyses suggest that because of rapid defores-
tation, almost 20 000 km of new forest edge is being
created each year in Brazilian Amazonia alone (W.
Chomentowski, D. Skole and M. A. Cochrane, personal
communication).

3. MICROCLIMATE AND WIND

On a local scale (less than 1 km), deforestation reduces
plant evapotranspiration, humidity, effective soil depth,
water-table height and surface roughness, and increases
soil erosion, soil temperatures and surface albedo (Wright
et al. 1996; Gash & Nobre 1997). Thus, the cleared lands
that surround forest fragments differ greatly from forest in
their physical and hydrological characteristics.
The forest edge is the interface between fragments and
their adjoining clearings, and the proliferation of edge has
major impacts on many ecological processes. Undisturbed
rainforests are dark and humid, with stable temperatures,
little wind and almost continuous canopy cover (Lovejoy
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Figure 1. In human-dominated landscapes, most forest
fragments are small (less than 1 km2). Data shown are for
two fragmented areas in eastern Amazonia (Paragominas,
filled bars; Tailândia, open bars) (after Cochrane &
Laurance 2002).

et al. 1986; Laurance et al. 2002a), but when joined by
clearings these conditions are sharply altered. On newly
created edges, elevated temperatures, reduced humidity
and increased sunlight and vapour pressure deficits can
penetrate at least 40–60 m into fragment interiors (Kapos
1989; Didham & Lawton 1999; Sizer & Tanner 1999).
Such changes increase evapotranspiration in understorey
vegetation, leading to depleted soil moisture and creating
stresses for drought-sensitive plants (Kapos 1989; Mal-
colm 1998).

In addition, the edges of habitat remnants are exposed
to increase wind speed, turbulence and vorticity (Bergen
1985; Miller et al. 1991). Wind disturbance is an important
ecological force in the tropics, especially in the cyclonic and
hurricane zones from ca. 7–20o latitude (Webb 1958; Whit-
more 1975; Lugo et al. 1983), but also in equatorial forests
affected by convectional storms (Nelson et al. 1994) and
prevailing winds (Laurance 1997). Winds striking an
abrupt forest edge can exert strong lateral-shear forces on
exposed trees and create considerable downwind turbu-
lence for at least 2–10 times the height of the forest edge
(Somerville 1980; Savill 1983; Reville et al. 1990). Greater
wind speeds increase the persistence and frequency of wind
eddies near edges that can heavily buffet the upper 40% of
the forest (Bull & Reynolds 1968).

These physical alterations lead to sharply increased tree
mortality and damage within 100–300 m of fragment mar-
gins (figure 3; Ferreira & Laurance 1997; Laurance et al.
1998a). In central Amazonia, large (greater than 60 cm
diameter) trees are especially vulnerable, dying nearly
three times faster near edges than in forest interiors
(Laurance et al. 2000). Some trees near edges simply drop
their leaves and die standing (Lovejoy et al. 1986; Sizer &
Tanner 1999), apparently because sudden changes in
moisture, temperature or light exceed their physiological
tolerances. Many others are killed by winds, as evidenced
by the fact that trees near edges are significantly more
likely to be snapped or uprooted than those in forest
interiors (D’Angelo et al. 2002).
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Chronically elevated tree mortality has myriad effects.
It fundamentally alters canopy-gap dynamics (Ferreira &
Laurance 1997; Laurance et al. 1998a; Lewis 1998),
which influences forest structure, composition and diver-
sity. Smaller fragments often become hyper-disturbed,
leading to progressive changes in floristic composition
(Laurance 1997). New trees regenerating near forest edges
are significantly biased toward disturbance-loving pioneer
and secondary species and against old-growth, forest-
interior species (Viana et al. 1997; Laurance et al. 1998b).
Lianas—important structural parasites that reduce tree
growth, survival and reproduction—increase in density
near edges and may further elevate tree mortality
(Oliveira-Filho et al. 1997; Viana et al. 1997; Laurance et
al. 2001). Leaf litter accumulates near edges (Carvalho &
Vasconcelos 1999; Sizer et al. 2000) as drought-stressed
trees shed leaves, and may negatively affect seed germi-
nation (Bruna 1999) and seedling survival (Scariot 2001).
Finally, fragmented forests exhibit a marked decline of
biomass (Laurance et al. 1997), increased necromass and
accelerated carbon cycling (Nascimento & Laurance
2004), and are probably a non-trivial source of atmos-
pheric carbon emissions (Laurance et al. 1998c; Nasci-
mento & Laurance 2004).

Accelerated tree mortality directly affects forest–climate
interactions by increasing the density of tree-fall gaps and
altering the canopy structure. Recurring canopy damage
exacerbates edge-related changes in microclimate, increas-
ing daytime temperature (Malcolm 1998) and vapour
pressure deficits (Camargo & Kapos 1995) and altering
the amount and spectral quality of light reaching the forest
floor (Turton 1992). Such changes create physiological
stresses for sensitive plant species (Kapos et al. 1993;
Bruna 2002). Gaps in the canopy are also prone to wind
vortices that can kill or damage adjoining trees (Bull &
Reynolds 1968; Reville et al. 1990) and can become foci
for recurring canopy disturbances (Laurance 1997). Thus,
edge-related changes in microclimate can be substantially
magnified by elevated canopy damage near edges.

4. EDGE AND LANDSCAPE STRUCTURE

The physical structure of edges strongly influences
forest–climate interactions. In the tropics, newly formed
edges (less than 5 years old) are structurally open and thus
more permeable to lateral light and hot dry winds than
are older edges, which tend to become ‘sealed’ by a pro-
liferation of vines and second growth (Kapos et al. 1993;
Camargo & Kapos 1995; Didham & Lawton 1999). Wind
damage, however, is unlikely to lessen as fragment edges
become older and less permeable, as downwind turbu-
lence increases when edge permeability is reduced (Savill
1983). Nevertheless, edge structure influences the inten-
sity of many edge effects, and land-use practices that
repeatedly disturb fragment margins (such as regular
burning) can have severe impacts if they prevent natural
edge closure (Cochrane et al. 1999; Didham & Lawton
1999; Gascon et al. 2000).

In addition, edge orientation (aspect) can affect
microclimatic parameters that influence plant germi-
nation, growth and survival (Turton & Freiberger 1997).
For example, heat and desiccation stress are highest on
edges facing the afternoon sun (Malcolm 1998), whereas
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Figure 2. Habitat fragmentation leads to a proliferation of forest edge, as shown in two landscapes in eastern Amazonia (each
600 km2 in area; dark areas are forest and light areas are mostly pastures). (a) Tailândia, a government-sponsored colonization
project, shows the characteristic ‘fishbone’ pattern of deforestation, whereas (b) Paragominas is a cattle-ranching and logging
frontier. For each square kilometre of cleared land in these two areas, an average of 1.5 km of forest edge was created (after
Cochrane & Laurance 2002).
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Figure 3. In rainforests, tree mortality rises sharply near
forest edges. Data shown are from a long-term experimental
study of forest fragmentation in the central Amazon (after
Laurance et al. 1998a).

wind disturbance (Kapos et al. 1993; Laurance 1997) and
atmospheric deposition of pollutants (Weathers et al.
2001) are greatest on edges exposed to prevailing winds.
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Fragment size and isolation also influence forest–
climate interactions. Large clearings surrounding frag-
ments have greater ‘fetch’ than small clearings, resulting
in higher wind velocities and increased structural damage
to adjoining forest stands (Somerville 1980; Savill 1983).
Desiccation and temperature extremes are also likely to
increase with clearing size. Fragments that are small or
have irregular boundaries are especially vulnerable to edge
effects, because any point within the fragment will be
influenced by multiple nearby edges, rather than a single
edge (Malcolm 1994, 1998). Empirical and modelling
studies in central Amazonia suggest that the impacts of
edge-related tree mortality will rise sharply once fragments
fall below 100–400 ha in area, depending on fragment
shape (Laurance et al. 1998a).

Finally, the structure of modified vegetation surround-
ing fragments can clearly affect forest–climate interactions.
Fragments surrounded by regrowth forest are somewhat
buffered from damaging winds and harsh external
microclimates, and suffer lower edge-related tree mortality
than do those encircled by cattle pastures (Mesquita et al.
1999). The hydrology of different vegetation types also
varies considerably. For example, in the eastern Amazon,
degraded cattle pastures (which are dominated by shrubs
and small trees) contain deep-rooted plants that absorb
deep soil water and thereby maintain moderately high
rates of evapotranspiration during the dry season. This is
in sharp contrast to managed pastures (grass
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Figure 4. Estimated fire frequencies as a function of distance
from forest edge for the Tailândia region in eastern
Amazonia. Data are based on remote-sensing imagery
spanning a 14-year period (after Cochrane & Laurance 2002).

monocultures), which contain virtually no deep roots and
exhibit little evapotranspiration during dry periods
(Nepstad et al. 1994). Hence, fragments surrounded by
managed pastures may experience greater desiccation
stress than those surrounded by degraded pastures or
regrowth, because the former fail to recycle water vapour
into the atmosphere during the critical dry-season months.

5. EDGE-RELATED FIRES

Except when subjected to strong droughts (e.g. Leigh-
ton & Wirawan 1986; Peres 1999; Gudhardja et al. 2000;
Barlow & Peres 2004), large unbroken tracts of humid
tropical forest are usually highly resistant to fire, both
because the dense canopy maintains humid, nearly wind-
less conditions and because fine fuels such as leaf litter,
which can be highly flammable, decompose rapidly
(Nepstad et al. 1999). When fragmented, however, trop-
ical forests become drastically more vulnerable. Fragments
tend to have dry fire-prone edges with large amounts of
litter and wood debris (Cochrane et al. 1999; Nasci-
mento & Laurance 2004). They are also frequently jux-
taposed with cattle pastures, which are regularly burned
to control weeds and promote new grass. In addition, frag-
ments are particularly vulnerable to periodic droughts,
which increase already-high tree mortality and litter pro-
duction (Laurance & Williamson 2001) and thereby aug-
ment forest fuels at a time when conditions are driest.
Finally, forest fragments are frequently disturbed by log-
ging (Laurance & Cochrane 2001), which further exacer-
bates forest desiccation, fuel loading and vulnerability to
fire (Uhl & Kauffman 1990; Holdsworth & Uhl 1997;
Siegert et al. 2001).

In the eastern Amazon, surface fires that originate in
adjoining pastures can penetrate large distances into frag-
ment interiors (figure 4; Cochrane & Laurance 2002).
Although confined to the forest floor, such fires are highly
destructive because rainforest plants are poorly adapted
for fire, having thin bark and no underground buds from
which to resprout (Uhl & Kauffman 1990). Even light
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fires kill up to half of all trees and virtually all vines
(Cochrane & Schulze 1999; Barlow et al. 2003; Barlow &
Peres 2004). Subsequent fires are far more intense
because dying plants increase fuel loads and reduce can-
opy cover, promoting forest desiccation (Cochrane et al.
1999). Forest fragments affected by such recurring fires
may ‘implode’ over time as their margins collapse inward
(Gascon et al. 2000). Because surface fires can penetrate
up to several kilometres into forest interiors, even very
large (greater than 100 000 ha) forest fragments may be
vulnerable (Cochrane & Laurance 2002).

Spatial and temporal variability in rainfall have major
effects on fire frequency and intensity. Fires are especially
problematic in tropical regions affected by strong dry sea-
sons or by periodic droughts—such as occur during El
Niño events throughout large areas of the the neotropics,
Southeast Asia and Australasia (Leighton & Wirawan
1986; Kinnaird & O’Brien 1998; Curran et al. 1999;
Cochrane et al. 1999; Nepstad et al. 1999; Barlow & Peres
2004). In the Brazilian Amazon, more than one-third of
the closed-canopy forest experiences soil-water deficits
during strong droughts (Nepstad et al. 2001) and some 45
million hectares (13% of the total forest area) may already
be vulnerable to edge-related fires (Cochrane 2001).

6. REGIONAL EFFECTS

Insights into land–atmosphere interactions at landscape
to regional scales (ca. 10–1000 km) derive from simulation
models that may integrate data from weather satellites,
doppler radar, radiosonde sites, micrometeorological stud-
ies and other observations. Conclusions of larger-scale
models (including global-circulation and mesoscale
models) are more tenuous than those focusing on local
processes, given the potentially great complexity of inter-
acting factors at widely varying spatial scales. Rather than
attempt a detailed review, I focus on a few key findings.

A number of regional modelling studies have attempted
to project the future climatic impacts of severe tropical
deforestation. To simplify the models, several studies have
assumed complete conversion of Amazonian (e.g. Nobre
et al. 1991; Dickinson & Kennedy 1992; Gash & Nobre
1997; Lean & Rowntree 1993) or Southeast Asian
(Henderson-Sellers et al. 1993) forests to pasture or sav-
annah. Although results have varied, most studies predict
that uniform deforestation will lead to markedly decreased
regional rainfall (ca. 20–30%) as well as lower evapor-
ation, cloud cover and soil moisture, and higher albedo
and surface temperatures (e.g. Lean & Rowntree 1993;
Gash & Nobre 1997; Sud et al. 1996).

However, regional patterns of forest loss are never uni-
form. For example, tropical deforestation is much greater
in southeastern Amazonia than elsewhere in the basin and
more severe in western Africa than in the Congo Basin
(Laurance 1999). To better approximate reality, some
investigators modelled actual (ca. 1988) deforestation pat-
terns in Brazilian Amazonia. Predicted effects have been
less dramatic than for uniform clearing, with deforested
regions experiencing limited (6–8%) declines in rainfall,
moderate (18–33%) reductions in evapotranspiration,
elevated surface temperatures and greater wind speeds
(owing to reduced surface drag) that could affect moisture
convergence and circulation (Walker et al. 1995; Sud et al.
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Figure 5. Potential positive feedbacks among forest fragmentation, logging, fires and climate change in the Amazon (after
Laurance & Williamson 2001).

1996). Although of limited magnitude, for the large
expanses of Amazonia that have pronounced dry seasons
and are strongly influenced by El Niño droughts (Nepstad
et al. 1994), even modest drying and warming trends could
potentially cause marked increases in forest vulnerability
to fire, especially where forests are fragmented or logged.

Forest clearing and fragmentation create mosaics of
land with different physical properties. One potentially
important effect of increasing fragmentation is the ‘veg-
etation breeze’, whereby moist air is pulled away from for-
ests into adjoining pastures and clearings (e.g. Silva
Dias & Regnier 1996; Baidya Roy & Avissar 2000). The
humid air over forests is drawn into the clearing and con-
denses into rain-producing clouds, then is recycled—as
dry air—back over the forest. This effect has been
observed in clearings as small as a few hundred hectares,
but extensive clearings spanning ca. 100 km or more
apparently cause much larger-scale forest desiccation
(Avissar & Liu 1996). In Rondônia, Brazil, Silva Dias et
al. (2002) describe a 20 km wide zone of reduced rainfall
surrounding large forest clearings. Thus, by drawing
moisture away from adjoining forests, large clearings
might increase the vulnerability of forests to fire.

The deforestation process itself can also increase forest
desiccation. Smoke from tropical forest fires has been
shown to reduce rainfall and possibly cloud cover
(Rosenfeld 1999). This occurs because burning hypersat-
urates the atmosphere with cloud condensation nuclei
(microscopic particles in aerosol form) that bind with
water molecules in the atmosphere, inhibiting the forma-
tion of raindrops. As a result, large-scale forest burning
can create rain shadows that have been observed to extend
for hundreds of kilometres downwind (Freitas et al. 2000).
Aerosols from forest burning may also affect the thermo-
dynamic stability of the atmosphere, by absorbing and
scattering incoming solar radiation and increasing cloud
formation, but the consequences of such changes are
poorly understood (Martins et al. 1998; Andreae 2001).

The diverse environmental changes that affect cleared
and fragmented landscapes might interact in complex
ways. Of particular concern is that positive feedbacks may
arise (figure 5), in which large-scale deforestation increases
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local or regional desiccation and thereby renders remaining
forests more vulnerable to fire, promoting further defores-
tation (Laurance & Williamson 2001; Nepstad et al. 2001).
Such feedbacks could be driven by many of the mech-
anisms described above—edge-related fires, the vegetation
breeze, the moisture-trapping effects of smoke plumes and
regional drying and warming from declining evapotranspir-
ation, among others. The net effect is that large expanses
of forest that are currently too humid or intact to burn
readily may become more vulnerable in the future. Such
changes could profoundly influence the rate and spatial
pattern of forest destruction; for example, more seasonal
forests often face considerably higher conversion pressure
than wetter forests, because the former are both easier to
burn initially and require less effort to maintain as pastures
and farms (Schneider et al. 2000; Laurance et al. 2002b).
A greater incidence of fire in the tropics could also have
important global effects, by increasing greenhouse-gas
emissions and thereby exacerbating global warming
(Fearnside 2000; Houghton et al. 2000).

7. LARGER-SCALE EFFECTS

In addition to local and regional effects, tropical defor-
estation could have important remote impacts on other
regions. In Costa Rica, for example, extensive defores-
tation of the nearby Caribbean lowlands has apparently
led to marked downwind reductions of cloud cover, rain-
fall and mist at Monteverde Cloud Forest Reserve
(Lawton et al. 2001). Modelling studies suggest that rap-
idly increasing deforestation in the Indonesian Archipel-
ago may have a strong impact on the broader regional
climate due to feedbacks among the biosphere, atmos-
phere and ocean (Delire et al. 2001). Some simulations
suggest that heavy Amazonian deforestation will alter pre-
cipitation in areas south of the basin (Henderson-Sellers
et al. 1993), in Central America and the Caribbean, and
even at middle and higher latitudes (Gandú & Silva Dias
1998; Gedney & Valdes 2000; Avissar & Nobre 2002;
Avissar et al. 2002).

Finally, the regional climatic effects of deforestation could
potentially interact with global warming. Costa & Foley
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(2000) concluded that global warming would exacerbate the
effects of Amazonian deforestation, which by reducing eva-
potranspiration limits the capacity of the land surface to
cool itself. The net effect could be markedly higher surface
temperatures and a 20% reduction in regional rainfall
(Costa & Foley 2000). In addition, some models suggest
that El Niño droughts and tropical storms may increase in
frequency or severity as a result of global warming (IPCC
1996; Timmermann 1999). At the least, the frequency of
warm weather events should rise and the likelihood of cool
weather events decline, because of higher mean tempera-
tures (Mahlman 1997). Thus, by increasing the incidence of
droughts and hot weather, global warming could potentially
promote alarming positive feedbacks among deforestation,
regional desiccation and fire (figure 5).

8. CONCLUSIONS

A great deal remains unknown about the influence of
land-cover change on tropical forest–climate interactions.
Local-scale processes have been best characterized, but
important questions remain. For example, virtually nothing
is known about the effects of altered microclimatic con-
ditions near forest edges on plant and soil respiration rates
(cf. Nascimento & Laurance 2004). Higher temperatures
near edges should generally increase respiration, whereas
reduced humidity near edges could have an opposite effect
(e.g. Chambers et al. 2000, 2001). Given that tropical soils
contain more carbon (in soil organic matter and root
biomass) than the above-ground vegetation (Davidson &
Trumbore 1995; Moraes et al. 1995), altered soil respir-
ation rates could potentially have a large impact on the car-
bon balance of fragmented forests. On larger scales, our
understanding of the effects of deforestation on regional cli-
mates is still rudimentary, despite many indications that
such effects will be deleterious to forests.

For those attempting to assess the effects of global-
change phenomena on intact tropical forests, it must be
emphasized that edge-related alterations could penetrate
large distances into forest tracts. Diverse physical and
biotic changes often occur within the first 100–300 m of
edges, and other phenomena, such as surface fires, may
penetrate up to several kilometres inside forest margins.
Where forest tracts adjoin major clearings, alterations in
atmospheric circulation might infiltrate even farther into
forests, perhaps 20 km or more. Given the rapid pace of
forest conversion in the tropics, care must be taken to dis-
tinguish the consequences of global-change phenomena
from the ever-increasing effects of landscape alteration.
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